Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.463
Filtrar
1.
BMC Vet Res ; 20(1): 176, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711127

RESUMEN

BACKGROUND: This investigation assessed the effects of high dietary inclusion of Spirulina (Arthrospira platensis) on broiler chicken growth performance, meat quality and nutritional attributes. For this, 120 male broiler chicks were housed in 40 battery brooders (three birds per brooder). Initially, for 14 days, a standard corn and soybean meal diet was administered. Subsequently, from days 14 to 35, chicks were assigned to one of the four dietary treatments (n = 10 per treatment): (1) control diet (CTR); (2) diet with 15% Spirulina (SP); (3) diet with 15% extruded Spirulina (SPE); and (4) diet with 15% Spirulina plus a super-dosing enzymes supplement (0.20% pancreatin extract and 0.01% lysozyme) (SPM). RESULTS: Throughout the experimental period, both SP and SPM diets resulted in decreased final body weight and body weight gain compared to control (p < 0.001), with the SPE diet showing comparable results to CTR. The SPE diet prompted an increase in average daily feed intake (p = 0.026). However, all microalga treatments increased the feed conversion ratio compared to CTR. Dietary inclusion of Spirulina notably increased intestinal content viscosity (p < 0.010), which was mitigated by the SPM diet. Spirulina supplementation led to lower pH levels in breast meat 24 h post-mortem and heightened the b* colour value in both breast and thigh meats (p < 0.010). Furthermore, Spirulina contributed to an increased accumulation of total carotenoids, n-3 polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA), while diminishing n-6 PUFA, thus altering the n-6/n-3 and PUFA/SFA ratios favourably (p < 0.001). However, it also reduced zinc concentration in breast meat (p < 0.001). CONCLUSIONS: The findings indicate that high Spirulina levels in broiler diets impair growth due to increased intestinal viscosity, and that extrusion pre-treatment mitigates this effect. Despite reducing digesta viscosity, a super-dosing enzyme mix did not improve growth. Data also indicates that Spirulina enriches meat with antioxidants and n-3 PUFA but reduces α-tocopherol and increases saturated fats. Reduced zinc content in meat suggests the need for Spirulina biofortification to maintain its nutritional value.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Carne , Spirulina , Animales , Pollos/crecimiento & desarrollo , Alimentación Animal/análisis , Spirulina/química , Dieta/veterinaria , Masculino , Carne/análisis , Carne/normas , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Muramidasa/metabolismo
2.
Mikrochim Acta ; 191(6): 307, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713296

RESUMEN

An assay that integrates histidine-rich peptides (HisRPs) with high-affinity aptamers was developed enabling the specific and sensitive determination of the target lysozyme. The enzyme-like activity of HisRP is inhibited by its interaction with a target recognized by an aptamer. In the presence of the target, lysozyme molecules progressively assemble on the surface of HisRP in a concentration-dependent manner, resulting in the gradual suppression of enzyme-like activity. This inhibition of HisRP's enzyme-like activity can be visually observed through color changes in the reaction product or quantified using UV-visible absorption spectroscopy. Under optimal conditions, the proposed colorimetric assay for lysozyme had a detection limit as low as 1 nM and exhibited excellent selectivity against other nonspecific interferents. Furthermore, subsequent research validated the practical applicability of the developed colorimetric approach to saliva samples, indicating that the assay holds significant potential for the detection of lysozymes in samples derived from humans.


Asunto(s)
Colorimetría , Muramidasa , Saliva , Muramidasa/análisis , Muramidasa/química , Muramidasa/metabolismo , Colorimetría/métodos , Humanos , Saliva/química , Saliva/enzimología , Límite de Detección , Péptidos/química , Aptámeros de Nucleótidos/química , Proteínas/análisis , Técnicas Biosensibles/métodos , Histidina/análisis , Histidina/química
3.
Colloids Surf B Biointerfaces ; 238: 113928, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692175

RESUMEN

In this research, four water-insoluble flavonoid compounds were utilized and reacted with arginine to prepare four carbonized polymer dots with good water-solubility in a hydrothermal reactor. Structural characterization demonstrated that the prepared carbonized polymer dots were classic core-shell structure. Effect of the prepared carbonized polymer dots on protein amyloid aggregation was further investigated using hen egg white lysozyme and human lysozyme as model protein in aqueous solution. All of the prepared carbonized polymer dots could retard the amyloid aggregation of hen egg white lysozyme and human lysozyme in a dose-depended manner. All measurements displayed that the inhibition ratio of luteolin-derived carbonized polymer dots (CPDs-1) was higher than that of the other three carbonized polymer dots under the same dosage. This result may be interpreted by the highest content of phenolic hydroxyl groups on the periphery. The inhibition ratio of CPDs-1 on hen egg white lysozyme and human lysozyme reached 88 % and 83 % at the concentration of 0.5 mg/mL, respectively. CPDs-1 also could disaggregate the formed mature amyloid fibrils into short aggregates.


Asunto(s)
Amiloide , Flavonoides , Muramidasa , Polímeros , Agregado de Proteínas , Muramidasa/química , Muramidasa/metabolismo , Humanos , Polímeros/química , Polímeros/farmacología , Amiloide/química , Amiloide/antagonistas & inhibidores , Flavonoides/química , Flavonoides/farmacología , Agregado de Proteínas/efectos de los fármacos , Animales , Pollos , Carbono/química
4.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731411

RESUMEN

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Asunto(s)
Fulerenos , Simulación de Dinámica Molecular , Muramidasa , Unión Proteica , Fulerenos/química , Muramidasa/química , Muramidasa/metabolismo , Sitios de Unión , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteasa del VIH
5.
J Phys Chem B ; 128(17): 4076-4086, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38642057

RESUMEN

In aqueous binary solvents with fluorinated alcohols, 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and aliphatic alcohols, ethanol (EtOH) and 2-propanol (2-PrOH), the denaturation of hen egg white lysozyme (HEWL) with increasing alcohol mole fraction xA has been investigated in a wide view from the molecular vibration to the secondary and ternary structures. Circular dichroism (CD) measurement showed that the secondary structure of α-helix content of HEWL increases on adding a small amount of the fluorinated alcohol to the aqueous solution, while the ß-sheet content decreases. On the contrary, the secondary structure does not significantly change by the addition of the aliphatic alcohols. Correspondingly, the infrared (IR) spectroscopic measurements revealed that the amide I band red-shifts on the addition of the fluorinated alcohol. However, the band remains unchanged in the aliphatic alcohol systems with increasing alcohol content. To observe the ternary structure of HEWL, small-angle neutron scattering (SANS) experiments with H/D substitution technique have been applied to the HEWL solutions. The SANS experiments were successful in revealing the details of how the geometry of the HEWL changes as a function of xA. The SANS profiles indicated the spherical structure of HEWL in all of the alcohol systems in the xA range examined. The mean radius of HEWL in the two fluorinated alcohol systems increases from ∼16 to ∼18 Å during the change in the secondary structure against the increase in the fluorinated alcohol content. On contrast, the radius does not significantly change in both aliphatic alcohol systems below xA = 0.3 but expands to ∼19 Å as the alcohol content is close to the limitation of the HEWL solubility. According to the present results, together with our knowledge of the alcohol cluster formation and the interaction of the trifluoromethyl (CF3) groups with the hydrophobic moieties of biomolecules, the effects of alcohols on the denaturation of the protein have been discussed on a molecular scale.


Asunto(s)
Dicroismo Circular , Muramidasa , Desnaturalización Proteica , Dispersión del Ángulo Pequeño , Muramidasa/química , Muramidasa/metabolismo , Animales , Difracción de Neutrones , Espectrofotometría Infrarroja , Pollos , Alcoholes/química
6.
J Mater Chem B ; 12(19): 4666-4672, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647183

RESUMEN

The formation of transient structures plays important roles in biological processes, capturing temporary states of matter through influx of energy or biological reaction networks catalyzed by enzymes. These natural transient structures inspire efforts to mimic this elegant mechanism of structural control in synthetic analogues. Specifically, though traditional supramolecular materials are designed on the basis of equilibrium formation, recent efforts have explored out-of-equilibrium control of these materials using both direct and indirect mechanisms; the preponderance of such works has been in the area of low molecular weight gelators. Here, a transient supramolecular hydrogel is realized through cucurbit[7]uril host-guest physical crosslinking under indirect control from a biocatalyzed network that regulates and oscillates pH. The duration of transient hydrogel formation, and resulting mechanical properties, are tunable according to the dose of enzyme, substrate, or pH stimulus. This tunability enables control over emergent functions, such as the programmable burst release of encapsulated model macromolecular payloads.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Hidrogeles , Imidazoles , Hidrogeles/química , Hidrogeles/síntesis química , Concentración de Iones de Hidrógeno , Imidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Biocatálisis , Estructura Molecular , Muramidasa/química , Muramidasa/metabolismo
7.
Microb Pathog ; 190: 106641, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588925

RESUMEN

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Asunto(s)
Adyuvantes Inmunológicos , Antioxidantes , Bivalvos , Kéfir , Probióticos , Superóxido Dismutasa , Vibrio alginolyticus , Animales , Probióticos/farmacología , Bivalvos/química , Bivalvos/microbiología , Antioxidantes/metabolismo , Kéfir/microbiología , Superóxido Dismutasa/metabolismo , Spirulina/química , Malondialdehído/metabolismo , Malondialdehído/análisis , Alimentación Animal , Monofenol Monooxigenasa/metabolismo , Suplementos Dietéticos , Fosfatasa Alcalina/metabolismo , Muramidasa/metabolismo , Vibriosis/prevención & control
8.
J Hazard Mater ; 470: 134147, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565017

RESUMEN

Microplastics and antibiotics are prevalent and emerging pollutants in aquatic ecosystems, but their interactions in aquatic food chains remain largely unexplored. This study investigated the impact of polypropylene microplastics (PP-MPs) on oxytetracycline (OTC) trophic transfer from the shrimp (Neocaridina denticulate) to crucian carp (Carassius auratus) by metagenomic sequencing. The carrier effects of PP-MPs promoted OTC bioaccumulation and trophic transfer, which exacerbated enterocyte vacuolation and hepatocyte eosinophilic necrosis. PP-MPs enhanced the inhibitory effect of OTC on intestinal lysozyme activities and complement C3 levels in shrimp and fish, and hepatic immunoglobulin M levels in fish (p < 0.05). Co-exposure of MPs and OTC markedly increased the abundance of Actinobacteria in shrimp and Firmicutes in fish, which caused disturbances in carbohydrate, amino acid, and energy metabolism. Moreover, OTC exacerbated the enrichment of antibiotic resistance genes (ARGs) in aquatic animals, and PP-MPs significantly increased the diversity and abundance of ARGs and facilitated the trophic transfer of teta and tetm. Our findings disclosed the impacts of PP-MPs on the mechanism of antibiotic toxicity in aquatic food chains and emphasized the importance of gut microbiota for ARGs trophic transfer, which contributed to a deeper understanding of potential risks posed by complex pollutants on aquatic ecosystems.


Asunto(s)
Antibacterianos , Cadena Alimentaria , Microbioma Gastrointestinal , Microplásticos , Oxitetraciclina , Contaminantes Químicos del Agua , Animales , Oxitetraciclina/toxicidad , Microplásticos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Polipropilenos , Carpa Dorada/genética , Carpa Dorada/metabolismo , Penaeidae/microbiología , Penaeidae/efectos de los fármacos , Muramidasa/metabolismo
9.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673881

RESUMEN

Interstitial lung diseases (ILDs) are characterized by inflammation or fibrosis of the pulmonary parenchyma. Despite the involvement of immune cells and soluble mediators in pulmonary fibrosis, the influence of antimicrobial peptides (AMPs) remains underexplored. These effector molecules display a range of activities, which include immunomodulation and wound repair. Here, we investigate the role of AMPs in the development of fibrosis in ILD. We compare the concentration of different AMPs and different cytokines in 46 fibrotic (F-ILD) and 17 non-fibrotic (NF-ILD) patients by ELISA and using peripheral blood mononuclear cells from in vitro stimulation in the presence of lysozyme or secretory leukocyte protease inhibitor (SLPI) from 10 healthy donors. We observed that bronchoalveolar lavage (BAL) levels of AMPs were decreased in F-ILD patients (lysozyme: p < 0.001; SLPI: p < 0.001; LL-37: p < 0.001; lactoferrin: p = 0.47) and were negatively correlated with levels of TGF-ß (lysozyme: p = 0.02; SLPI: p < 0.001) and IL-17 (lysozyme: p < 0.001; SLPI: p < 0.001). We observed that lysozyme increased the percentage of CD86+ macrophages (p < 0.001) and the production of TNF-α (p < 0.001). We showed that lysozyme and SLPI were associated with clinical parameters (lysozyme: p < 0.001; SLPI: p < 0.001) and disease progression (lysozyme: p < 0.001; SLPI: p = 0.01). These results suggest that AMPs may play an important role in the anti-fibrotic response, regulating the effect of pro-fibrotic cytokines. In addition, levels of lysozyme in BAL may be a potential biomarker to predict the progression in F-ILD patients.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Enfermedades Pulmonares Intersticiales , Muramidasa , Inhibidor Secretorio de Peptidasas Leucocitarias , Humanos , Muramidasa/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Líquido del Lavado Bronquioalveolar/química , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Anciano , Citocinas/metabolismo , Adulto , Biomarcadores , Lavado Broncoalveolar , Leucocitos Mononucleares/metabolismo
10.
Viruses ; 16(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38675985

RESUMEN

The phage PRR1 belongs to the Leviviridae family, a group of ssRNA bacteriophages that infect Gram-negative bacteria. The variety of host cells is determined by the specificity of PRR1 to a pilus encoded by a broad host range of IncP-type plasmids that confer multiple types of antibiotic resistance to the host. Using P. aeruginosa strain PAO1 as a host, we analyzed the PRR1 infection cycle, focusing on cell lysis. PRR1 infection renders P. aeruginosa cells sensitive to lysozyme approximately 20 min before the start of a drop in suspension turbidity. At the same time, infected cells start to accumulate lipophilic anions. The on-line monitoring of the entire infection cycle showed that single-gene-mediated lysis strongly depends on the host cells' physiological state. The blockage of respiration or a reduction in the intracellular ATP concentration during the infection resulted in the inhibition of lysis. The same effect was observed when the synthesis of PRR1 lysis protein was induced in an E. coli expression system. In addition, lysis was strongly dependent on the level of aeration. Dissolved oxygen concentrations sufficient to support cell growth did not ensure efficient lysis, and a coupling between cell lysis initiation and aeration level was observed. However, the duration of the drop in suspension turbidity did not depend on the level of aeration.


Asunto(s)
Bacteriólisis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/genética , Fagos Pseudomonas/fisiología , Fagos Pseudomonas/genética , Bacteriófagos/fisiología , Bacteriófagos/genética , Escherichia coli/virología , Escherichia coli/genética , Especificidad del Huésped , Muramidasa/metabolismo
11.
J Phys Chem B ; 128(18): 4283-4300, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38683125

RESUMEN

Kidney-associated human lysozyme amyloidosis leads to renal impairments;thus, patients are often prescribed furosemide. Based on this fact, the effect of furosemide on induced human lysozyme fibrillation, in vitro, is evaluated by spectroscopic, calorimetric, computational, and cellular-based assays/methods. Results show that furosemide increases the lag phase and decreases the apparent rate of aggregation of human lysozyme, thereby decelerating the nucleation phase and amyloid fibril formation, as confirmed by the decrease in the level of Thioflavin-T fluorescence. Fewer entities of hydrodynamic radii of ∼171 nm instead of amyloid fibrils (∼412 nm) are detected in human lysozyme in the presence of furosemide by dynamic light scattering. Moreover, furosemide decreases the extent of conversion of the α/ß structure of human lysozyme into a predominant ß-sheet. The isothermal titration calorimetry established that furosemide forms a complex with human lysozyme, which was also confirmed through fluorescence quenching and computational studies. Also, human lysozyme lytic activity is inhibited competitively by furosemide due to the involvement of amino acid residues of the active site in catalysis, as well as complex formation. Conclusively, furosemide interacts with Gln58, Ile59, Asn60, Ala108, and Trp109 of aggregation-prone regions 2 and 4 of human lysozyme, thereby masking its sites of aggregation and generating only lower-order entities that are less toxic to red blood cells than the fibrils. Thus, furosemide slows the progression of amyloid fibrillation in human lysozyme.


Asunto(s)
Furosemida , Muramidasa , Muramidasa/química , Muramidasa/metabolismo , Humanos , Furosemida/química , Furosemida/farmacología , Agregado de Proteínas/efectos de los fármacos , Amiloide/metabolismo , Amiloide/química , Simulación de Dinámica Molecular
12.
IUCrJ ; 11(Pt 3): 359-373, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639558

RESUMEN

Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification.


Asunto(s)
Muramidasa , Compuestos Organometálicos , Renio , Renio/química , Muramidasa/química , Muramidasa/metabolismo , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Desarrollo de Medicamentos/métodos , Cristalografía por Rayos X , Sitios de Unión , Complejos de Coordinación/química , Imidazoles/química , Imidazoles/metabolismo , Modelos Moleculares
14.
Food Chem ; 449: 139229, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581793

RESUMEN

The unique high isoelectric point of lysozyme (LYZ) restricts its application in composite antibacterial coating due to the unfavorable liability to electrostatic interaction with other components. In this work, the antibacterial activity of a dispersible LYZ-carboxymethyl konjac glucomannan (CMKGM) polyelectrolyte complex was evaluated. Kinetic analysis revealed that, compared with free LYZ, the complexed enzyme exhibited decreased affinity (Km) but markedly increased Vmax against Micrococcus lysodeikticus, and QCM and dynamic light scattering analysis confirmed that the complex could bind with the substrate but in a much lower ratio. The complexation with CMKGM did not alter the antibacterial spectrum of LYZ, and the complex exerted antibacterial function by delaying the logarithmic growth phase and impairing the cell integrity of Staphylococcus aureus. Since the LYZ-CMKGM complex is dispersible in water and could be assembled easily, it has great potential as an edible coating in food preservation.


Asunto(s)
Antibacterianos , Mananos , Muramidasa , Staphylococcus aureus , Mananos/química , Mananos/farmacología , Mananos/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Muramidasa/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Cinética , Micrococcus/efectos de los fármacos , Micrococcus/crecimiento & desarrollo
15.
PLoS Pathog ; 20(4): e1012199, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683868

RESUMEN

The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in severe economic losses. Studies on shrimp immune response have shown that several antimicrobial peptides (AMPs) were upregulated upon EHP infection. Among those highly upregulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway responsible for LvLyz-c production in shrimp as well as its function against the EHP infection are still poorly understood. Here, we characterized major shrimp immune signaling pathways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection. Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a significant reduction of the LvLyz-c and the elevation of EHP copy number. We further elucidated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin staining showed that the signals were dramatically decreased in a dose-dependent manner, suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission electron microscopy analysis revealed that an endospore layer, which is composed mainly of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize that thinning of the endospore of EHP would result in altered permeability, hence affecting spore germination. This work provides insights into shrimp immune signaling pathways responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as important foundations for developing EHP control strategies.


Asunto(s)
Enterocytozoon , Muramidasa , Penaeidae , Transducción de Señal , Animales , Penaeidae/inmunología , Penaeidae/microbiología , Muramidasa/metabolismo , Enterocytozoon/metabolismo , Microsporidiosis/inmunología
16.
Int J Biol Macromol ; 266(Pt 1): 131108, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531523

RESUMEN

Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.


Asunto(s)
Autofagia , Celulosa , Diosgenina , Mitocondrias , Agregado de Proteínas , Humanos , Autofagia/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Celulosa/análogos & derivados , Diosgenina/farmacología , Diosgenina/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Agregado de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células HEK293 , Muerte Celular/efectos de los fármacos , Muramidasa/metabolismo , Muramidasa/química , Animales , Nanopartículas/química , Portadores de Fármacos/química , Regulación hacia Arriba/efectos de los fármacos
17.
Dev Comp Immunol ; 155: 105158, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467323

RESUMEN

This study investigated the effects of two distinct probiotics, Leuconostoc mesenteroides B4 (B4) and Bacillus pumilus D5 (D5), along with their combination, on the diet of white shrimp (Litopenaeus vannamei) during an eight-week feeding trial. The diets tested included B4 + dextran at 107 CFU/g feed (the B4 group), D5 alone at 107 CFU/g feed (the D5 group), and a combination of B4 + dextran and D5 at 5 × 106 CFU/g feed each (the B4+dextran + D5 group). Relative to the control group, those administered probiotics exhibited moderate enhancements in growth. By the eighth week, the weight gain for the B4, D5, and B4+D5 groups was 696.50 ± 78.15%, 718.53 ± 130.73%, and 693.05 ± 93.79%, respectively, outperforming the control group's 691.66 ± 31.10% gain. The feed conversion ratio was most efficient in the B4 group (2.16 ± 0.06), closely followed by B4+D5 (2.21 ± 0.03) and D5 (2.22 ± 0.06), with the control group having the highest ratio (2.27 ± 0.03). While phenoloxidase activity was somewhat elevated in the B4 and D5 groups, no significant differences were noted in respiratory burst activity or total hemocyte count across all groups. Challenge tests at weeks 4 and 8 showed that the B4 + D5 combination offered superior protection against AHPND-causing Vibrio parahaemolyticus. The 4-week cumulative survival rate was highest in shrimp treated with B4 + dextran + D5 (56.25%), followed by B4 + dextran (31.25%), control (18.75%), and lowest in D5 (12.5%). By week 8, the B4 + dextran + D5 (43.75%) and B4 + dextran (37.5%) groups significantly outperformed the control group (6.25%, p < 0.05), with no significant difference observed between the D5 group (37.5%) and the control group at day 56. Analysis of the shrimp's foregut microbiota revealed an increase in unique OTUs in the B4 and B4 + D5 groups. Compared to the control, Proteobacteria abundance was reduced in all probiotic groups. Potential pathogens like Vibrio, Bacteroides, Neisseria, Botrytis, Clostridioides, and Deltaentomopoxvirus were detected in the control but were reduced or absent in probiotic groups. Beneficial microbes such as Methanobrevibacter and Dictyostelium in the B4+D5 group, and Sugiyamaella in the B4 group, showed significant increases. Probiotics also led to higher transcript levels of nitric oxide synthase in the hemocytes, and lysozyme and transglutaminase in the midgut, along with lysozyme and α2-macroglobulin in the foregut. Notably, the combined B4 + D5 probiotics synergistically enhanced the expression of superoxide dismutase and prophenoloxidase in the foregut, indicating an improved immune response. In summary, this study demonstrates that the probiotics evaluated, especially when used in combination, significantly boost the expression of specific immune-related genes, enhance the bacterial diversity and richness of the intestine, and thus prevent the colonization and proliferation of Vibrio spp. in L. vannamei.


Asunto(s)
Bacillus , Dictyostelium , Leuconostoc mesenteroides , Penaeidae , Probióticos , Vibrio parahaemolyticus , Animales , Resistencia a la Enfermedad , Muramidasa/metabolismo , Leuconostoc , Dextranos/metabolismo , Vibrio parahaemolyticus/fisiología , Dieta , Inmunidad Innata
18.
J Chem Inf Model ; 64(8): 3269-3277, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38546407

RESUMEN

The use of computer simulation for binding affinity prediction is growing in drug discovery. However, its wider use is constrained by the accuracy of the free energy calculations. The key sources of error are the force fields used to depict molecular interactions and insufficient sampling of the configurational space. To improve the quality of the force field, we developed a Python-based computational workflow. The workflow described here uses the minimal basis iterative stockholder (MBIS) method to determine atomic charges and Lennard-Jones parameters from the polarized molecular density. This is done by performing electronic structure calculations on various configurations of the ligand when it is both bound and unbound. In addition, we validated a simulation procedure that accounts for the protein and ligand degrees of freedom to precisely calculate binding free energies. This was achieved by comparing the self-adjusted mixture sampling and nonequilibrium thermodynamic integration methods using various protein and ligand conformations. The accuracy of predicting binding affinity is improved by using MBIS-derived force field parameters and a validated simulation procedure. This improvement surpasses the chemical precision for the eight aromatic ligands, reaching a root-mean-square error of 0.7 kcal/mol.


Asunto(s)
Muramidasa , Unión Proteica , Termodinámica , Muramidasa/química , Muramidasa/metabolismo , Ligandos , Electrones , Bacteriófago T4/enzimología , Mutación , Conformación Proteica , Simulación de Dinámica Molecular , Modelos Moleculares
19.
J Innate Immun ; 16(1): 173-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38387449

RESUMEN

INTRODUCTION: The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS: Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS: We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION: Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.


Asunto(s)
Bombyx , Encéfalo , Hemocitos , Inmunidad Innata , Larva , Muramidasa , Animales , Bombyx/inmunología , Bombyx/virología , Encéfalo/inmunología , Encéfalo/virología , Larva/inmunología , Larva/virología , Hemocitos/inmunología , Muramidasa/metabolismo , Muramidasa/genética , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/inmunología , Análisis de la Célula Individual , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
20.
Front Immunol ; 15: 1342210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318186

RESUMEN

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Asunto(s)
Lubina , Cardamine , Selenio , Animales , Antioxidantes/metabolismo , Catalasa , Lubina/genética , Muramidasa/metabolismo , Selenio/farmacología , Cardamine/genética , Cardamine/metabolismo , Glutatión Reductasa/genética , Peróxido de Hidrógeno , Intestinos , Selenoproteínas , ARN Mensajero/genética , Glutatión Peroxidasa/genética , Superóxido Dismutasa/genética , Claudinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA